QP Algorithms with Guaranteed Accuracy
and Run Time for Support Vector Machines

LLos ALAMOS
NATIONAL LABORATORY

Don Hush, Patrick Kelly, Clint Scovel and Ingo Steinwart
Modeling, Algorithms and Informatics Group, CCS-3
Los Alamos National Laboratory
{dhush,kelly, jcs, ingo}@lanl.gov

LANL Technical Report: LA-UR-05-5165

Report Date: December 22, 2005

Abstract

We describe polynomial-time algorithms that produce approximate solutions with guaranteed ac-
curacy for a class of QP problems that are used in the design of support vector machine classifiers.
These algorithms employ a two—stage process where the first stage produces an approximate so-
lution to a dual QP problem and the second stage maps this approximate dual solution to an
approximate primal solution. For the second stage we describe an O(nlogn) algorithm that maps
an approximate dual solution with accuracy (2v2K, + 8\/X)*2)\612) to an approximate primal so-
lution with accuracy €, where n is the number of data samples, K, is the maximum kernel value
over the data and A > 0 is the SVM regularization parameter. For the first stage we present new
results for decomposition algorithms and describe new decomposition algorithms with guaranteed
accuracy and run time. In particular, for 7—rate certifying decomposition algorithms we establish
the optimality of 7 = 1/(n — 1) and we extend the recent algorithm of [32] to form two new com-
posite algorithms that also achieve the 7 = 1/(n — 1) iteration bound in [25] but yield faster run
times in practice. We also exploit the 7—rate certifying property of these algorithms to produce
new stopping rules that are computationally efficient and that guarantee a specified accuracy for
the approximate dual solution. Furthermore, for the dual QP problem corresponding to the stan-
dard classification problem we describe operational conditions for which the Simon and composite
algorithms possess an upper bound of O(n) on the number of iterations. For this same problem
we also describe general conditions for which a matching lower bound exists for any decomposition
algorithm that uses working sets of size 2. For the Simon and composite algorithms we also estab-
lish an O(n?) bound on the overall run time for the first stage. Combining the first and second
stages gives an overall run time of O(n?(c; + 1)) where ¢, is an upper bound on the computation
to perform a kernel evaluation. Pseudocode is presented for a complete algorithm that inputs an
accuracy €, and produces an approximate solution that satisfies this accuracy in low order poly-
nomial time. Experiments are included to illustrate the new stopping rules and to compare the
Simon and composite decomposition algorithms.

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W—7405-ENG—-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a
nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S.
Department of Energy.

LANL Technical Report: LA-UR-05-5165 1 Introduction

1 Introduction

Solving a quadratic programming (QP) problem is a major component of the support vector ma-
chine (SVM) training process. In practice it is common to employ algorithms that produce ap-
prozimate solutions. This introduces a trade-off between computation and accuracy that has not
been thoroughly explored. The accuracy, as measured by the difference between the criterion value
of the approximate solution and the optimal criterion value, is important for learning because it
has a direct influence on the generalization error. For example, since the optimal criterion value
plays a key role in establishing the SVM performance bounds in [35, 36, 31] the influence of the
accuracy can be seen directly through the proofs of these bounds. Since the primal QP problem
can be prohibitively large and its Wolfe dual QP problem is considerably smaller it is common to
employ a two-stage training process where the first stage produces an approximate solution to the
dual QP problem and the second stage maps this approximate dual solution to an approximate
primal solution. Existing algorithms for the first stage often allow the user to trade accuracy and
computation for the dual QP problem through the choice of a tolerance value that determines when
to stop the algorithm, but it is not known how to choose this value to achieve a desired accuracy
or run time. Furthermore existing algorithms for the second stage have been developed largely
without concern for accuracy and therefore little is known about the accuracy of the approximate
primal solutions they produce. In this paper we describe algorithms that accept the accuracy ¢, of
the primal QP problem as an input and are guaranteed to produce an approximate solution that
satisfies this accuracy in low order polynomial time. To our knowledge these are the first algorithms
of this type for SVMs. In addition our run time analysis reveals the effect of the accuracy on the
run time, thereby allowing the user to make an informed decision regarding the trade—off between
computation and accuracy.

Algorithmic strategies for the dual QP problem must address the fact that when the number
of data samples n is large the storage requirements for the kernel matrix can be excessive. This
barrier can be overcome by invoking algorithmic strategies that solve a large QP problem by solving
a sequence of smaller QP problems where each of the smaller QP problems is obtained by fixing
a subset of the variables and optimizing with respect to the remaining variables. Algorithmic
strategies that solve a QP problem in this way are called decomposition algorithms and a number
have been developed for dual QP problems: [1, 5, 6, 8, 9, 12, 15, 16, 18, 19, 24, 25, 26, 27, 28, 29,
32, 37].

The key to developing a successful decomposition algorithm is in the method used to determine
the working sets, which are the subsets of variables to be optimized at each iteration. To guarantee
stepwise improvement each working set must contain a certifying pair (Definition 2 below). Stronger
conditions are required to guarantee convergence: [3, 5, 9, 20, 21, 24] and even stronger conditions
appear necessary to guarantee rates of convergence: [1, 9, 20]. Indeed, although numerous decom-
position algorithms have been proposed few are known to possess polynomial run time bounds.
Empirical studies have estimated the run time of some common decomposition algorithms to be
proportional to nP where p varies from approximately 1.7 to approximately 3.0 depending on the
problem instance: [12, 18, 29]. Although these types of studies can provide useful insights they have
limited utility in predicting the run time for future problem instances. In addition these particular
studies do not appear to be calibrated with respect to the accuracy of the final criterion value and
so their relevance to the framework considered here is not clear. [20] performs a convergence rate
analysis that may eventually be used to establish run time bounds for a popular decomposition
algorithm, but these results hold under rather restrictive assumptions and more work is needed
before the tightness and utility of these bounds is known (a more recent version of this analysis

LANL Technical Report: LA-UR-05-5165 1 Introduction

can be found in [5]). [1] present a randomized decomposition algorithm whose expected run time
is O((n + r(k®d?)) kdlogn) where n is the number of samples, d is the dimension of the input
space, 1 < k < n is a data dependent parameter and r(k2d?) is the run time required to solve
the dual QP problem over k?d? samples. This algorithm is very attractive when k?d?> < n, but
in practice the value of k is unknown and it may be large when the Bayes error is not close to
zero. [9] define a class of rate certifying algorithms and describe an example algorithm that uses

5
0 (M) computation to reach an approximate dual solution with accuracy €, where K, is

the maximum value of the kernel matrix. Recently [32] introduced a new rate certifying algorithm

which can be shown, using the results in [25], to use O ("/{i“ +n?log (I)‘(—Z)) computation to reach

an approximate dual solution with accuracy €, where A > 0 is the SVM regularization parameter.
In this paper we combine Simon’s algorithm with the popular Generalized SMO algorithm of [16]
to obtain a composite algorithm that possesses the same computation bound as Simon’s algorithm,
but appears to use far less computation in practice (as illustrated in our experiments). We also
extend this approach to form a second composite algorithm with similar properties. In addition
we introduce operational assumptions on K, and the choice of A and € that yield a simpler com-
putation bound of O(n?) for these algorithms. Finally to guarantee that actual implementations
of these algorithms produce approximate solutions with accuracy e we introduce two new stopping
rules that terminate the algorithms when an adaptively computed upper bound on the accuracy
falls below e.

The second stage of the design process maps an approximate dual solution to an approximate
primal solution. In particular this stage determines how the approximate dual solution is used
to form the normal vector and offset parameter for the SVM classifier. It is common practice to
use the approximate dual solution as coefficients in the linear expansion of the data that forms
the normal vector, and then use a heuristic based on approximate satisfaction of the Karush-
Kuhn-Tucker (KKT) optimality conditions to choose the offset parameter. This approach is simple
and computationally efficient, but it produces an approximate primal solution whose accuracy is
unknown. In this paper we take a different approach based on the work of [11]. This work studies
the accuracy of the approximate primal solution as a function of the accuracy of the approximate
dual solution and the map from approximate dual to approximate primal. In particular for the SVM
problem it appears that choosing this map involves a trade—off between computation and accuracy.
Here we employ a map described and analyzed in [11] that guarantees an accuracy of ¢, for the
primal QP problem when the dual QP problem is solved with accuracy (2v/2K,, +8\/X)_2A6]2). This
map resembles current practice in that it performs a direct substitution of the approximate dual
solution into a linear expansion for the normal vector, but differs in the way that it determines the
offset parameter. We develop an O(n logn) algorithm that computes the offset parameter according
to this map.

The main results of this paper are presented in Sections 2 and 3. Proofs for all the theorems,
lemmas, and corollaries in these sections can be found in Section 6, except for Theorem 1 which
is established in [11]. Section 2 describes the SVM formulation, presents algorithms for the first
and second stages, and provides theorems that characterize the accuracy and run time for these
algorithms. Section 3 then determines specific run time bounds for decomposition algorithms
applied to the standard classification problem and the density level detection problem. Section 4
describes experiments that illustrate the new stopping rules and compare the run time of different
decomposition algorithms. Section 5 provides a summary of results and establishes an overall run
time bound. A complete algorithm that computes an ¢,—optimal solution to the primal QP problem
is provided by (Procedure 1, Section 2) and Procedures 3-8 in the appendix.

LANL Technical Report: LA-UR-05-51652 Definitions, Algorithms, and Main Theorems

2 Definitions, Algorithms, and Main Theorems

Let X be a pattern space and k : X X X — R be a kernel function with Hilbert space H and feature
map ¢ : X — H so that k(z1,z2) = ¢(z1) - ¢(z2),Vz1,20 € X. Define Y := {-1,1}. Given a
data set ((z1,Y1), - (Tn,yn)) € (X x Y)" the primal QP problem that we consider takes the form

ming e Al + D0, wid
s.t. yi(d(zi) - +b) >1-& (1)
& >0, 1=1,2,..,n

where A > 0, u; > 0 and), u; = 1. This form allows a different weight u; for each data sample.
Specific cases of interest include:

1. the L1-SVM for the standard supervised classification problem which sets u; = 1/n, i =
1,...,n,

2. the DLD-SVM for the density level detection problem described in [34] which sets
1 —
W — { o Yi=1
i<y =
(tpn_1’ Y

where 71 is the number of samples distributed according to P; and assigned labely =1, n_; is
the number of samples distributed according to P_; and assigned labely = —1, h = dP, /dP_;
is the density function, and p > 0 defines the p-level set {h > p} that we want to detect.

The dual QP problem is

max, —%a-Qa+a-1
s.t. y-a=20 (2)
OSCI,Z'S’U,Z' i:1,2,...,n.

where
Qij = yiyjk(zi, z;) /2.

The change of variables defined by

0 yi=1
a; = yia;+1l;, ;= { w Zz _ 4 (3)
(2 2

gives the canonical dual QP problem

maxg —%a-Qa+a-w+w0
s.t. lra=c 4)
OSOéiS’U,Z' i:1,2,...,n

where

Qi = Maa)/2A, e=1-1, w=Ql+y, wo=—1-y—1-QL 5)
We denote the canonical dual criterion by

R(a) = —%a-Qa+a-w+w0.

LANL Technical Report: LA-UR-05-51652 Definitions, Algorithms, and Main Theorems

Note that this change of variables preserves the criterion value. Also note that the relation between
a and « is one-to—one. Most of our work is with the canonical dual because it simplifies the
algorithms and their analysis.

We define the set of e-optimal solutions of a constrained optimization problem as follows.

Definition 1. Let P be a constrained optimization problem with parameter space ©, criterion
function G : © — R, feasible set © C O of parameter values that satisfy the constraints, and optimal
criterion value G* (i.e. G* = sup,.g G(#) for a maximization problem and G* = inf,_g G(0) for a
minimization problem). Then for any € > 0 we define

O(P) := {#cO:|GO) —G*| <€}
to be the set of e-optimal solutions for P.

We express upper and lower computation bounds using O(-) and €(-) notations defined by

O(g(n)) = {f(n) : 3 positive constants ¢ and ng such that 0 < f(n) < cg(n) for all n > ng},
Q(g(n)) = {f(n) : 3 positive constants ¢ and ng such that 0 < cg(n) < f(n) for all n > ng}.

We now describe our algorithm for the primal QP problem. It computes an approximate canonical
dual solution & and then maps to an approximate primal solution (4, b, £) using the map described
in the following theorem. This theorem is derived from [11, Theorem 2 and Corollary 1].

Theorem 1. Consider the primal QP problem Psy s in (1) with A > 0 and |¢(z;)|>? < K,i =1,..,n,
and its corresponding canonical dual QP problem Dgy i in (4) with criterion R. Let e, > 0,
e=(2v2K + 8\/X)_2/\612, and suppose that & € O(Dgy) and R(&) > 0. If

. 1 &
b =gy ; (& — 1;)p(i)

&i(b) = max (0,1 — y;(4 - dla;) + b)), i =1,..,n

and

n
b € arg min Z u;i€i(b)

i=1
then (1, b,£(b)) € Oc, (Psy m).

This theorem gives an expression for 1ﬁ that coincides with the standard practice of replacing
an optimal dual solution «* by an approximate dual solution & in the expansion for the optimal
normal vector determined by the KKT conditions. The remaining variables é and b are obtained by
substituting 1ﬁ into the primal optimization problem, optimizing with respect to the slack variable
¢, and then minimizing with respect to b '. To guarantee an accuracy €p for the primal problem this
theorem stipulates that the value of the dual criterion at the approximate solution be non—negative
and that the accuracy for the dual solution satisfy € = (2\/2? + 8\/X)*2/\e§. The first condition
is easily achieved by algorithms that start with o = [(so that the initial criterion value is 0) and
continually improve the criterion value at each iteration. We will guarantee the second condition
by employing an appropriate stopping rule for the decomposition algorithm.

!This method for choosing the offset was investigated briefly in [16, Section 4].

LANL Technical Report: LA-UR-05-51652 Definitions, Algorithms, and Main Theorems

Procedure 1 shows the primal QP algorithm that produces an €,-optimal solution ((34,1;) that
defines the SVM classifier

sign (zn: (“’2; l) k(zi, z) + IS) .

=1

This algorithm inputs a data set T,, = ((z1,%1), .-, (Zn,Yn)), a kernel function k, and parameter
values A, u and €,. Lines 3-6 produce an exact solution for the degenerate case where all the
data samples have the same label. The rest of the routine forms an instance of the canonical
dual QP according to (5), sets € according to Theorem 1, sets o’ = [so that R(a’) = 0, uses
the routine Decomposition to compute an e-approximate canonical dual solution &, and uses the
routine 0ffset to compute the offset parameter b according to Theorem 1. The parameter g, which
is defined in the next section, is a temporary value computed by Decomposition that allows a more
efficient computation of b by 0ffset. The next three sections provide algorithms and computational
bounds for the routines Decomposition and 0ffset.

Procedure 1 The algorithm for the primal QP problem.
: PrimalQP (T}, k, A, u, €p)

1

2:

3: if (yi = yl,Vi) then

4 a+Lbey

5. Return(a, b)

6: end if

7: Form canonical dual: Q;; < W, l; + %, w—Ql+y, c+1-1
8: Compute Desired Accuracy of Dual: € « %

9: Initialize canonical dual variable: ol < [

10: g&,g) < Decomposition(Q,w,c,u,¢,a’)

11: b+ Offset(g,y,u)
12: Return(é, b)

2.1 Decomposition Algorithms

We begin with some background material that describes: optimality conditions for the canonical
dual, a model decomposition algorithm, necessary and sufficient conditions for convergence to a
solution, and sufficient conditions for rates of convergence. In many cases this background material
extends a well known result to the slightly more general case considered here where each component
of u may have a different value.

Consider an instance of the canonical dual QP problem given by (Q,w,wyg,c,u). Define the set
of feasible values

A = {a:(0<a; <u;) and (a-1=c)},

and the set of optimal solutions

A" = arg max R(a).
Also define the optimal criterion value R* := sup,c4 R(c) and the gradient at «
g9(e) = VR(a) = —Qa+w. (6)

LANL Technical Report: LA-UR-05-51652 Definitions, Algorithms, and Main Theorems

The optimality conditions established by [16] take the form,
ae A & gjla) <gp(a) forall j:aj <uj, k:og >0. (7)
These conditions motivate the following definition from [16, 9].

Definition 2. A certifying pair (also called a wviolating pair) for a € A is a pair of indices that
witness the non-optimality of «, i.e. it is a pair of indices j : a;j < uj and k : o > 0 such that

gj(@) > gr(a).

Using the approach in [9, Section 3] it can be shown that the requirement that working sets
contain a certifying pair is both necessary and sufficient to obtain a stepwise improvement in the
criterion value. Thus, since certifying pairs are defined in terms of the gradient component values
it appears that the gradient plays an essential role in determining members of the working sets.
To compute the gradient at each iteration using (6) requires O(n?) operations. However since
decomposition algorithms compute a sequence of feasible points (a™).,>o using working sets of size
p, the sparsity of (@™! — @™) means that the update

g(@™*) = g(a™) - Q@™ — ™) (8)

requires only O(pn) operations. A model decomposition algorithm that uses this update is shown
in Procedure 2. After computing an initial gradient vector this algorithm iterates the process
of determining a working set, solving a QP problem restricted to this working set, updating the
gradient vector, and testing a stopping condition.

Procedure 2 A model decomposition algorithm for the canonical dual QP problem.

: ModelDecomposition(Q,w,c,u,¢,aP)

1
2
3: Compute initial gradient ¢° < —Qa® + w

4: m+0

5: repeat

6: Compute a working set W™

7. Compute o t! by solving the restricted QP determined by o™ and W™
8 Update the gradient: g™t + g™ — Q(a™t! — a™)

2 m<+<m+1

10: until (stopping condition is satisfied)

11: Return(a™, g™)

The requirement that working sets contain a certifying pair is necessary but not sufficient to
guarantee convergence to a solution (e.g. see the examples in [5, 14]). However [22] has shown that
including a maxz—violating pair defined by

(%,k*) : j* € arg max gi(a), k* € arg min g;() (9)
2 <Ug 2:a; >0

in each working set does guarantee convergence to a solution. Once the gradient has been computed

a max—violating pair can be determined in one pass through the gradient components and therefore

requires O(n) computation. The class of maz—violating pair algorithms that include a max—violating

pair in each working set includes many popular algorithms, e.g. [4, 12, 16]. Although asymptotic

convergence to a solution is guaranteed for these algorithms, their convergence rate is unknown.

LANL Technical Report: LA-UR-05-51652 Definitions, Algorithms, and Main Theorems

In contrast we now describe algorithms based on alternative pair selection strategies that have the
same O(n) computational requirements (once the gradient has been computed) but possess known
rates of convergence to a solution.

Consider the model decomposition algorithm in Procedure 2. The run time of the main loop
is the product of the number of iterations and the computation per iteration, and both of these
depend heavily on the size of the working sets and how they are chosen. The smallest size that
admits a convergent algorithm is 2 and many popular algorithms adopt this size. We refer to these
as W2 decomposition algorithms. A potential disadvantage of this approach is that the number of
iterations may be larger than it would be otherwise. On the other hand adopting working sets of
size 2 allows us to compute an ezact solution to each 2-variable QP problem in constant time (e.g.
see [29]). This is important if we wish to rely on existing convergence proofs which require ezact
solutions for the smaller QP problems. In addition W2 decomposition algorithms require only O(n)
computation to update the gradient and have the advantage that the overall algorithm can be quite
simple (as demonstrated by the W2 max-violating pair algorithm). Furthermore adopting size 2
working sets will allow us to implement our new stopping rules in constant time. Thus, while most
of the algorithms we describe below allow the working sets to be larger than 2, our emphasis will
be on their W2 variants.

In addition to their size, the content of the working sets has a significant impact on the run
time through its influence on the convergence rate of the algorithm. [9] prove that convergence
rates can be guaranteed simply by including a rate certifying pair in each working set. Roughly
speaking a rate certifying pair is a certifying pair that, when used as the working set, provides a
sufficient stepwise improvement. To be more precise we start with the following definitions. Define
a working set to be a subset of the index set of the components of a, and let W denote a working set
of unspecified size and W), denote a working set of size p. In particular W), = {1,2,...,n} denotes
the entire index set. The set of feasible solutions for the canonical dual QP sub-problem defined
by a feasible value a and a working set W is defined

.A(Oé,W) = {d ceA: & =ao; Vi ¢ W}
Define

o(alW) = ,Ejl(lpw)g(a) (& —a)

to be the optimal value of the linear programming (LP) problem at «. The following definition is
adapted from [9].

Definition 3. For 7 > 0 an index pair Wy is called a 7-rate certifying pair for o if o(a|Ws) >
To(a|W,). A decomposition algorithm that includes a 7—rate certifying pair in the working set at
every iteration is called a T7—rate certifying algorithm.

For a 7-rate certifying algorithm [9] provide an upper bound on the number of iterations as a
function of 7. An improved bound can be obtained as a special case of [25, Theorem 1]. The next
theorem provides a slightly different bound that does not depend on the size of the working sets and
therefore slightly improves the bound obtained from [25, Theorem 1] when the size of the working
sets is larger than 2.

Theorem 2. Consider the canonical dual QP problem in (4) with criterion function R and Gram
matriz Q. Let L > max; Qi and S > max;u;. A T-rate certifying algorithm that starts with o°

LANL Technical Report: LA-UR-05-51652 Definitions, Algorithms, and Main Theorems

achieves R* — R(a™) < € after [1h] iterations of the main loop where

([gm<m—Rm%ﬂ+, €>u£2

T € T

2 (4LS? 7(R* — R(a?)) ALS?
: 14 | (B) . e< :
|7 TE 4152 n T

[0] denotes the smallest integer greater than or equal to 0, and 0]+ = max(0,80).

[3] have shown that for every « € A there exists a 7-rate certifying pair with 7 > 1/n2. This result
can be used to establish the existence of decomposition algorithms with polynomial run times. The
first such algorithm was provided by [9] where the rate certifying pairs satisfied 7 > 1/n%. However
the value 7 can be improved and the bound on the number of iterations reduced if the rate certifying
pairs are determined differently. Indeed [25] prove that 7 > 1/n for a maz—Ip2 pair

Wy € 1%
) M%%%dﬂﬂ

which is a pair with the maximum linear program value. The next theorem provides a slightly
better result of 7 > 1/(n — 1) for this pair and establishes the optimality of this bound 2.

Theorem 3. Forac A

ola|W,

Furthermore, there exist problem instances for which there exist o € A such that

_ olali)
s, oelWe) = =

Since a max-1p2 pair gives the largest value of o(a|W2) it follows from Definition 3 and Theorem
3 that the largest single value of 7 that can be valid for all iterations of all problem instances is
1/(n — 1). Thus a max-Ip2 pair is optimal in that it achieves the minimum iteration bound in
Theorem 2 with respect to 7. Furthermore [32] has introduced an algorithm for computing a max—
1p2 pair that requires only O(n) computation and therefore coincides with the O(n) computation
required to perform the other steps in the main loop. However, in spite of the promise suggested
by this analysis experimental results suggest that there is much room to improve the convergence
rates achieved with max—Ip2 pairs (e.g. see Section 4). The theorem below provides a simple way
to determine pair selection methods whose convergence rates are least as good as those guaranteed
by the max—Ip2 pair method and possibly much better.

Theorem 4. Let DECOMP be a realization of the model decomposition algorithm for the canoni-
cal dual QP in Procedure 2 and let (&™) represent a sequence of feasible points produced by this
algorithm. At each iteration m let W2m be a T-rate certifying pair and let ™1 be the feasible
point determined by solving the restricted QP determined by o™ and W2m If for every m > 0 the
stepwise improvement satisfies R(a™t1) — R(a™) > R(&™') — R(«'™) then DECOMP will achieve
R* — R(a™) < € after [1h] iterations of the main loop where 1 is given by Theorem 2.

2This result provides a negligible improvement over the 7 > 1/n result of List and Simon but is included here
because it establishes optimality and because its proof, which is quite different from that of List and Simon, provides
additional insight into the construction of certifying pairs that achieve 7 > 1/(n — 1).

LANL Technical Report: LA-UR-05-51652 Definitions, Algorithms, and Main Theorems

This theorem implies that any pair whose stepwise improvement is at least as good as that
produced by a max-1p2 pair yields a decomposition algorithm that inherits the iteration bound
in Theorem 2 with 7 = 1/(n — 1). An obvious example is a maz—gp2 pair, which is a pair with
the largest stepwise improvement. However since determining such a pair may require substantial
computation we seek alternatives. In particular Simon’s algorithm visits several good candidate
pairs in its search for a max—Ip2 pair and can therefore be easily extended to form an alternative
pair selection algorithm that is computationally efficient and satisfies this stepwise improvement
property. To see this we start with a description of Simon’s algorithm.

First note that when searching for a max-1p2 pair it is sufficient to consider only pairs (j, k)
where g;(a) > gi(a). For such a pair it is easy to show that (e.g. see the proof of Theorem 3)

o(al{j,k}) = min(u; — aj, ag)(g;j(a) — gr(a)) = Ajk (g5(@) — gr(@)) (10)

where u; is the upper bound on «; specified in (4) and Ajj, := min(u; —a;, a;). The key to Simon’s
algorithm is the recognition that among the O(n?) index pairs there are at most 2n distinct values
for A:

uy —ay, a1, U1 — Q2, @2, ..., Up — Qp, On. (11)

Consider searching this list of values for one that corresponds to a maximum value of o. For an
entry of the form u; — a; for some j, an index k that maximizes o(«a|{j, k}) satisfies

ke arg max (g(0)-g(0) = arg min gla).

log>uj—aj Log>uj—aj
Similarly for an entry of the form «j, for some k, an index j that maximizes o(a|{j, k}) satisfies

j € arg max (g(a)—gk(a)) = arg max g/a).
Luj—a;>ay liuj—oy>ag

Now suppose we search the list of values from largest to smallest and keep track of the maximum
gradient component value for entries of the form u; — o; and the minimum gradient component
value for entries of the form «j as we go. Then as we visit each entry in the list the index pair
that maximizes ¢ can be computed in constant time. Thus a max-lp2 pair can be determined in
one pass through the list. A closer examination reveals that only the nonzero values at the front
of the list need to be scanned, since entries with zero values cannot form a certifying pair (i.e.
they correspond to pairs for which there is no feasible direction for improvement). In addition,
since nonzero entries of the form u; — a; correspond to components j where a; < u;, and nonzero
entries of the form qj correspond to components k where «y > 0, once the scan reaches the last
nonzero entry in the list the indices of the maximum and minimum gradient component values
correspond to a max-violating pair. Pseudocode for this algorithm is shown in Procedure 4 in
Appendix Appendix A:. This algorithm requires that the ordered list of values be updated at each
iteration. If the entries are stored in a linear array this can be accomplished in O(pn) time by
a simple search and insert algorithm, where p is the size of the working set. However, with the
appropriate data structure (e.g. a red-black tree) this list can be updated in O(plogn) time. In
this case the size of the working sets must satisfy p = O(n/logn) to guarantee an O(n) run time
for the main loop.

Simon’s algorithm computes both a max—Ip2 pair and a max—violating pair at essentially the same
cost. In addition the stepwise improvement for an individual pair can be computed in constant

LANL Technical Report: LA-UR-05-51652 Definitions, Algorithms, and Main Theorems

time. Indeed with W3" = {j, k} and g(a]*) > g(cj) the stepwise improvement &7 takes the form 3

A2
m_ %69 A%q/2, 64 > qA (12)
ﬁ, otherwise
where d; = g(a') — g(af'), ¢ = Qjj + Qrr — 2Qjr and A = min (u; — ag”,afc”). Thus we can

efficiently compute and compare the stepwise improvements of the max—violating and max—lp2
pairs and choose the one with the largest improvement. We call this the Composite—I pair selection
method. It adds a negligible amount of computation to the main loop and its stepwise improvement
cannot be worse than either the max—violating pair or max-Ip2 algorithm alone. We can extend
this idea further by computing the stepwise improvement for all certifying pairs visited by Simon’s
algorithm and then choosing the best. We call this the Composite—II pair selection method. This
methods adds a non—negligible amount of computation to the main loop, but may provide even
better stepwise updates. It is worth mentioning that other methods have been recently introduced
which examine a subset of pairs and choose the one with the largest stepwise improvement, e.g. see
[7, 17]. The methods described here are different in that they are designed specifically to satisfy
the condition in Theorem 4.

We have described four pair selection methods; max-lp2, Composite-I (best of max—violating
and max-1p2), Composite-II (best of certifying pairs visited by Simon’s algorithm), and max-qp2
(largest stepwise improvement) which all yield decomposition algorithms that satisfy the iteration
bound in Theorem 2 with 7 = 1/(n — 1), but whose actual computational requirements on a
specific problem may be quite different. In Section 4 we perform experiments to investigate the
actual computational requirements for these methods.

2.2 Stopping Rules

Algorithms derived from the model in Procedure 2 require a stopping rule. Indeed to achieve the
run time guarantees described in the previous section the algorithms must be terminated properly.
The most common stopping rule is based on the observation that, prior to convergence, a max—
violating pair (j*, k*) represents the most extreme violator of the optimality conditions in (7). This
suggests the stopping rule: stop at the first iteration rh where

gj+(@™) — ggs (™) < tol (13)

where tol > 0 is a user defined parameter. This stopping rule is employed by nearly all existing
decomposition algorithms (e.g. see [4, 5, 12, 16, 23, 29]) and is especially attractive for max—
violating pair algorithms since the rule can be computed in constant time once a max—violating
pair has been computed. [23] justifies this rule by proving that the gap g;-(a™) — g (a™) con-
verges to zero asymptotically for the sequence of feasible points generated by a particular class
of decomposition algorithms. In addition [13] prove that (13) is satisfied in a finite number of
steps for a specific decomposition algorithm. However the efficacy of this stopping rule is not yet
fully understood. In particular we do not know the relation between this rule and the accuracy
of the approximate solution it produces, and we do not know the convergence rate properties of
the sequence (g, (@™) — gi~(a™)) on which the rule is based. In contrast we now introduce new
stopping rules which guarantee a specified accuracy for the approximate solutions they produce,
and whose convergence rate properties are well understood. In addition we will show that these new

3This expression can be derived from equation (27) in the proof of Lemma 1.

10

LANL Technical Report: LA-UR-05-51652 Definitions, Algorithms, and Main Theorems

stopping rules can be computed in constant time when coupled with the pair selection strategies
in the previous section.

The simplest stopping rule that guarantees an e—optimal solution for a 7—rate certifying algorithm
is to stop after 77 iterations where 77 is given by Theorem 2 with R* — R(a®) replaced by a
suitable upper bound (e.g. 1). We call this Stopping Rule 0. However the bound in Theorem 2 is
conservative. For a typical problem instance the algorithm may reach the accuracy e in far fewer
iterations. We introduce stopping rules that are tailored to the problem instance and therefore may
terminate the algorithm much earlier. These rules compute an upper bound on R*— R(«) adaptively
and then stop the algorithm when this upper bound falls below e. There are many ways to determine
an upper bound on R* — R(«). For example the primal-dual gap, which is the difference between
the primal criterion value and the dual criterion value, provides such a bound and therefore could
be used to terminate the algorithm. However, computing the primal-dual gap would add significant
computation to the main loop and so we do not pursue it here. Instead we develop stopping rules
that, when coupled with one of the pair selection methods in the previous section, are simple to
compute. These rules use the bound R* — R(a) < o(«|W2)/7 which was first established by [9]
and is reestablished as part of the theorem below. The theorem and corollary below establish the
viability of these rules by proving that this bound converges to zero as R(a™) — R*, and that if
R(a™) — R* at a certain rate then the bound converges to zero at a similar rate.

Theorem 5. Consider the canonical dual QP problem in (4) with Gram matriz @Q, constraint
vector u, feasible set A, criterion function R, and optimal criterion value R*. Let L > max;Q;.
For working sets of size p let

sup g ul < Up.
VolWn ey,

Let o € A and let W) be a size p working set that includes a T-rate certifying pair for o. Then

70(042%) in(l, ngp)) < R*—R(a) < 70(0‘|TW1’). (14)

The next corollary follows trivially from Theorem 5.

Corollary 1. Consider the canonical dual QP problem in (4) with criterion function R. For any
sequence of feasible points (&™) and corresponding sequence of working sets (W™) that include
T—rate certifying pairs the following holds:

R(a™) - R* & o(a™W™)—0.
In addition, rates for R(a™) — R* imply rates for o(a™|W™) — 0.

This corollary guarantees that the following stopping rule will eventually terminate a 7-rate
certifying algorithm, and that when terminated at iteration 77 it will produce a solution o™ that
satisfies R(a™) — R* < e.

Definition 4 (Stopping Rule 1). For a 7-rate certifying algorithm with 7-rate certifying pair
sequence (W3"), stop at the first iteration 77 where o(a™|Wi") < re.

11

LANL Technical Report: LA-UR-05-51652 Definitions, Algorithms, and Main Theorems

This rule can be implemented in constant time using (10). The effectiveness of this rule will
depend on the tightness of the upper bound in (14) for values of & near the optimum. We can
improve this stopping rule as follows. Define

oM .= R(a™!) — R(a™)
and suppose we have the following bound at iteration m
R* — R(a™) < s.

Then at iteration m + 1 we have

m+1 m—+1
R* — R(a™*!) < min ("(O‘ W) 5g) .

T

Thus an initial bound s° (e.g. s° = ¢%/7) can be improved using the recursion

m—+1 Wm+1
8m—|—1 — min (0’(04 ‘ 2)’Sm _ 5%)

-
which leads to the following stopping rule:

Definition 5 (Stopping Rule 2). For a 7-rate certifying algorithm with 7-rate certifying pair
sequence (WJ"), stop at the first iteration 17 where s™ < e.

This rule is at least as good as Stopping Rule 1 and possibly better. However it requires that

we additionally compute the stepwise improvement 6% = R(a™"!) — R(a™) at each iteration.

In the worst case, since the criterion can be written R(a) = 3o - (g(a) + w) + wo, the stepwise

improvement ¢ can be computed in O(n) time (assuming g(a™) has already been computed).
However for W2 variants this value can be computed in constant time using (12). In Section 4 we
describe experimental results that compare all three stopping rules.

2.3 Computing the Offset

We have concluded our description of algorithms for the Decomposition routine in Procedure 1 and
now proceed to describe an algorithm for the Offset routine. According to Theorem 1 this routine
must solve

be argmbini_zlui max (0, 1-— yZ(Q/A) (i) + b)) .

An efficient algorithm for determining b is enabled by using (5) and (6) to write

1—yith- d(z:) =1 -y % > (@5 —1)k(w), i)
=1

=1-y(Qa—1)i = yi(wi — (Qa)) = wigi(a) .
This simplifies the problem to

n
b€ arg mbinZui max (0, y;(g;(&) — b)) .
i=1

12

LANL Technical Report: LA-UR-05-51653 Operational Analysis of Decomposition Algorithms

The criterion 7 | u; max (0, y;(gi(&) — b)) is the sum of hinge functions with slopes —u;y; and
b—intercepts g;(&). It is easy to verify that the finite set {g;(&),7 = 1,...,n} contains an optimal
solution . To see this note that the sum of hinge functions creates a piecewise linear surface where
minima occur at corners, and also possibly along flat spots that have a corner at each end. Since
the corners coincide with the points g;(&) the set {g;(&),7 = 1, ...,n} contains an optimal solution.
The run time of the algorithm that performs a brute force computation of the criterion for every
member of this set is O(n?). However this can be reduced to O(nlogn) by first sorting the values
gi(&) and then visiting them in order, using constant time operations to update the criterion value
at each step. The details are shown in Procedure 8 in Appendix Appendix A:.

2.4 A Complete Algorithm

We have now described a complete algorithm for computing an e,—optimal solution to the primal
QP problem. A specific realization is provided by (Procedure 1,Section 2) and Procedures 3-8
in Appendix Appendix A:. Multiple options exist for the Decomposition routine depending on the
choice of working set size, pair selection method, and stopping rule. The realization in the appendix
implements a W2 variant of the Composite-I decomposition algorithm with Stopping Rule 2 (and
is easily modified to implement the Composite-1I algorithm). In the next two sections we complete
our run time analysis of decomposition algorithms.

3 Operational Analysis of Decomposition Algorithms

In this section we use Theorems 2 and 4 to determine run time bounds for rate certifying decom-
position algorithms that are applied to the L1-SVM and DLD-SVM canonical dual QP problems.
It is clear from Theorem 2 that these bounds will depend on the parameters 7, S, L, R* and e.
Let us consider each of these in turn. In the algorithms below each working set contains either a
max—1Ip2 pair or a pair whose stepwise improvement is at least as good as that of a max—Ip2 pair.
Thus by Theorem 4 we can set 7 = 1/(n — 1). Instead however we set 7 = 1/n since this value is
also valid and it greatly simplifies the iteration bounds without changing their basic nature. The
parameter S will take on a different, but known, value for the L1-SVM and DLD-SVM problems
as described below. Using the definition of L in Theorem 2 and the definition of @ in (5) we set
L= % where K > maxi<;<p k(zi, ;). We consider two possibilities for K. The first is the value
K, = 112%); k(x;, ;)
which is used to bound the run time for a specific problem instance and the second is the constant
K = sup k(z, z)
zeX
which is used to bound the run time for classes of problem instances that use the same kernel, e.g.
SVM learning problems where the kernel is fixed. In the second case we are interested in problems
where K is finite. For example for the Gaussian RBF kernel k(z, z') = e~I1#=2'I” we obtain K = 1.
The optimal criterion value R* is unknown but restricted to [0,1]. To see this we use (5) to obtain

R(a) = —%Q-Qa—}—a-w—l-wo = —%(a—l)-Q(a—l)—l—(a—l)-y.

Then since [€ A it follows that R* > R(l) = 0. Furthermore, using the positivity of @@ and the
definition of / in (3) we obtain that for any a € A the bound
1

Rle) = —J(a-0-Qla-O+(a-l)-y < (a-1)-y < u-1=1

13

LANL Technical Report: LA-UR-05-51653 Operational Analysis of Decomposition Algorithms

holds. Not only is R* restricted to [0, 1], but under very general conditions it is, with high proba-
bility, an upper bound on the classification error of the optimal solution. We can establish such a
result by combining a concentration of measure analysis with the fact that the optimal dual crite-
rion value is equal to the optimal primal criterion value (e.g. see [6, 11]), and the optimal primal
criterion value is an upper bound on the empirical classification error. We have now considered all
the parameters that determine the iteration bound except A and e which are chosen by the user.

Recent theoretical results by [35, 36, 31] indicate that with a suitable choice of kernel and mild
assumptions on the distribution the trained classifier’s generalization error will approach the Bayes
error at a fast rate if we choose A o« n#, where the rate is determined (in part) by the choice of
0 < B < 1. Although these results hold for exact solutions to the primal QP problem it is likely
that similar results will hold for approximate solutions as long as ¢, — 0 at a sufficiently fast rate
in n. However in practice there is little utility in improving the performance once it is sufficiently
close to the Bayes error. This suggests that once we reach a suitably large value of n there may be
no need to decrease A and €, below some fixed values A and €,. Thus, for fixed values A > 0 and
& > 0 we call any (), ¢,) that satisfies A > X and ¢, > €, an operational choice of these parameters.
When K is finite Theorem 1 gives a corresponding fixed value € = (2\/@ + 8\/§)_25\€p2 > 0 that
we use to define an operational choice of the dual accuracy e.

We begin our analysis by considering decomposition algorithms for the L1-SVM problem. Al-
though our emphasis is on rate certifying decomposition algorithms, our first theorem establishes
a lower bound on the number of iterations for any W2 decomposition algorithm.

Theorem 6. Let P be a probability measure on X XY and let (z,y) denote the corresponding
random variable. Let k: X x X — R be a kernel with reproducing kernel Hilbert space H and map
¢: X = H. Let X, P and ¢ determine a probability measure Py of the mapped random variable
$(x) such that |supp(Py)| < K. Define the clipped error of the SVM classifier (1,b) with respect
to P as

ep(¥,b) := Ep[min(1, max (0, 1 —y(¢-é(z) +b)))].

Let T, = ((%1,Y1)s s (TnyYn)) € (X X Y)™ be n i.i.d. samples from P and let (¢*,b*,&*) be an
optimal solution to the L1-SVM primal QP problem formed from T, (i.e. a solution with accuracy
ep = 0). Consider the corresponding canonical dual QP problem with criterion function R and

optimal value R*. If § < e™! and n > (% + 1) ln% then with probability at least 1 — 6§ any W2

variant of Procedure 2 that starts with o® = [will achieve R* — R(a™) < € in no less than [m/]
iterations where

M = Imax (O, n(ép(w*’b*)_e_gn)>

and

This theorem gives general conditions for which m = w for large n, i.e. the minimum
number of iterations is proportional to n with proportionality constant w. The size of

the proportionality constant depends on the size of &(*,b*) which is greater than or equal to the

14

LANL Technical Report: LA-UR-05-51653 Operational Analysis of Decomposition Algorithms

following classification errors: the classification error of (1*,b*), the smallest classification error
achievable by any (1,b), and the Bayes classification error. The following corollary provides a
formal statement of conditions for which the lower bound on the number of iterations is order n.

Corollary 2. Consider applying a W2 decomposition algorithm with o® =1 to L1-SVM problems
that satisfy the conditions of Theorem 6. Let 0 < k < 1/2 and let A\, < n™" be the regularization
value for problems with n samples. Let

ch = inf Plsign(y-g(z) +5) £1)

_ . EVA R :
be the smallest classification error. Define 6, 1= 4y/no(K?+1)%e” X+1. If ep > € then there exists

a positive constant n such that for each ny > n the minimum number of iterations m required to
achieve an accuracy € satisfies m > (ep4—e> n, ¥n > ng with probability at least 1—0,,. Furthermore,

since 0py — 0 as ng — oo the relation m = Q(n) holds with probability 1.

We note that the condition A\, < n~" appears to be quite reasonable since it is necessary to
achieve the consistency results of [33] and the performance rate results of [35, 36, 31].

We now continue our analysis by establishing upper bounds on the computation required for
rate certifying decomposition algorithms applied to the L1-SVM and the DLD-SVM problems.
In the examples below we establish two types of computation bounds: generic bounds which hold
for any value of n, any choice of A > 0, and either value of K; and operational bounds that hold
when K = K is finite and operational choices are made for € and A. In the latter case we obtain
bounds that are uniform in A and € and whose constants depend on the operational limits € and
A. These bounds are expressed using O(-) notation which suppresses their dependence on K, € and
X but reveals their dependence on n. In both examples we first consider a general class of rate
certifying decomposition algorithms whose working sets may be larger than 2. For these algorithms
we establish generic and operational bounds on the number of iterations. Then we consider the
W2 variants of these algorithms and establish operational bounds on their overall run time.

Example 1. Consider solving the L1-SVM canonical dual using a decomposition algorithm where
each working set includes a certifying pair whose stepwise improvement is at least as good as that
produced by a max-lp2 pair. This includes algorithms where each working set includes a max—1p2,
Composite-I, Composite-II or max—qp2 pair. Applying Theorem 2 with § = 1/n, L = K/2),
R*— R(a®) < 1,7 =1/n and € < 1 gives the generic bound

1 2K
2nln{ -}, e>—
€ An

m < (15)

2K An 2K

(2= —1+In(22)), e<=

" ()\en + n<2K>) ‘S
on the number of iterations. With K = K, this expression gives a bound on the number of iterations
for a specific problem instance. When K = K is finite, operational choices are made for ¢ and A,
and n is large the number of iterations is determined by the first case and is O(n). This matches
the lower bound in Corollary 2 and is therefore optimal in this sense. For a W2 variant that uses
an algorithm from Section 2.1 to compute a max—Ip2, Composite-I or Composite—II pair at each

iteration the main loop requires O(n) computation to determine the pair, O(logn) computation
to update the ordered list M, O(1) computation to update o, and O(n) computation to update

15

LANL Technical Report: LA-UR-05-5165 4 Experiments

the gradient. Thus the main loop requires a total of O(n) computation. Combining the bounds
on the number of iterations and the computation per iteration we obtain an overall computational
requirement of O(n?). In contrast, for a W2 variant that computes a max-qp2 pair at each iteration
the main loop computation will increase. Indeed the current best algorithm for computing a max—
qp2 pair is a brute force search which requires O(n?) computation and we strongly suspect that
this cannot be reduced to the O(n) efficiency of Simon’s algorithm. Combining this with the lower
bound on the number of iterations in Corollary 2 demonstrates that there are cases where the
overall run time of the max—qp2 variant is inferior.

Example 2. Consider solving the DLD-SVM canonical dual using a decomposition algorithm
where each working set includes a certifying pair whose stepwise improvement is at least as good
as that produced by a max-lp2 pair. In this case we can determine a value for S as follows,

< 1 ,) (s) 1
max u; = max , <max|—, —|=——F——:=8§
i (I+pni’ (14 p)n_q ny n_q min(ny,n_1)

where n1 and n_1 are the number of samples with labels y = 1 and y = —1 respectively as described
in Section 2. Suppose that n; < n_; (results for the opposite case are similar). Applying Theorem
2 with L = K/2\, R* — R(a®) < 1, and 7 = 1/n gives the generic bound

1 2Kn
2nln | = >
nn(e), >3

2n(2Kn—1+ln(>\n%>) 6<2Kn
exn? 2Kn))’ An?
on the number of iterations. The dependence on ni distinguishes this bound from the bound in
(15). With K = K,, (16) gives a bound on the number of iterations for a specific problem instance.
Suppose that n; = Q(n). Then when K = K is finite, operational choices are made for e and
A, and n is large the number of iterations is determined by the first case and is O(n). For a W2
variant that uses an algorithm from Section 2.1 to compute a max-1p2, Composite-I or Composite—

IT pair at each iteration the main loop requires O(n) computation. Thus the overall computational
requirement is O(n?).

4 Experiments

The experiments in this section are designed to accomplish three goals: to investigate the utility
of Stopping Rules 1 and 2 by comparing them with Stopping Rule 0, to compare actual versus
worst case computational requirements, and to investigate the computational requirements of W2
decomposition algorithms that use different pair selection methods. Our focus is on the computa-
tional requirements of the main loop of the decomposition algorithm since this loop contributes a
dominating term to our run time analysis, and since the computational requirements of the other
algorithmic components can be determined very accurately without experimentation. We compare
the four rate certifying pair selection methods (max—qp2,max-1p2, Composite-I, Composite-II)
described in Section 2.1, and a max—violating pair method that we call maz-vps. This max—vps
algorithm is identical to the Composite—I algorithm, except that when choosing between a max—1p2
and max-—violating pair we always choose the max—violating pair. To provide objective compar-
isons all algorithms use the same stopping rule. This means that the max—vps algorithm uses a

16

LANL Technical Report: LA-UR-05-5165 4 Experiments

different stopping rule than existing max—violating algorithms. Nevertheless including the max—vps
algorithm in our experiments helps provide insight into how the algorithms developed here might
compare with existing algorithms.

Our experiments are based on two different problems: a DLD-SVM problem formed from the
Cyber—Security data set described in [34] and an L1-SVM problem formed from the Spambase
data set from the UCI repository ([2]). All experiments employ SVMs with a Gaussian RBF
kernel k(z,z') = e~°ll#=='I”. Since a value of the regularization parameter (\,o) that optimizes
performance is usually not known ahead of time, the value that is ultimately used to design the
classifier is usually determined through some type of search that requires running the algorithm
with different values of (A,0). Thus it is important to understand how different values, optimal
and otherwise, affect the run time. To explore this effect we present results for two different values,
(*,0*) and (),), obtained as follows. We train the SVM at a set of grid values and choose (*, 0*)
to be a value that gives the best performance on an independent validation data set *. Then (X, &)
is chosen to be some other grid value encountered during the search that yielded non—-optimal but
nontrivial performance (i.e. it achieves some separation of the training data). For the DLD-SVM
the performance is defined by the risk function R in [34] and for the L1-SVM it is the average
classification error.

The Cyber—Security data set was derived from network traffic collected from a single computer
over a 16-month period. The goal is to build a detector that will recognize anomalous behavior from
the machine. Each data sample is a 12—dimensional feature vector whose components represent real
valued measurements of network activity over a one-hour window (e.g. “average number of bytes
per session”). Anomalies are defined by choosing a uniform reference distribution and a density
level p = 1. The parameter values (A*,0*) = (1077,107!) and (),5) = (.05,.05) were obtained by
employing a grid search with ni:n_; = 4000:10,000 training samples and 2000:100,000 validation
samples. The solution obtained with parameter values (A*, c*) separated the training data and gave
a validation risk of R = 0.00025. The corresponding alarm rate (i.e. the rate at which anomalies
are predicted by the classifier once it is placed in operation) is 0.0005.

The Spambase data set contains 4601 samples from R x {—1,1} where d = 57. This data set
contains 1813 samples with label ¥y = —1 and 2788 samples with label y = 1. The parameter values
(A*,0%) = (1075,1073) and (X,5) = (1072,103) are obtained by employing a grid search with
3601 training samples and 1000 validation samples. The solution obtained with parameter values
(A*,0*) did not separate the training data and gave a classification error of 0.093 on the validation
set.

We present results for three experiments.

Experiment 1. This experiment investigates the utility of Stopping Rules 1 and 2 by comparing
them with Stopping Rule 0. More specifically we compare the actual criterion gap R*—R(a™) to the
bounds used by these three stopping rules. We refer to the bounds for Stopping Rules 0, 1, and 2 as
Bounds 0, 1, and 2 respectively. To obtain an estimate R* of R* we run the decomposition algorithm
in Procedure 3 with e = 107'° and compute the resulting criterion value. Then to obtain results for
comparison we run this algorithm again and compute: the criterion gap R* —R(a™), Bound 1 given
by no(a™|W3"), Bound 2 obtained from the recursive rule s™ = min(no(a™|W3"),s™ ™! — 5571,
and Bound 0 given by equation (19) in the proof of Theorem 2.

A plot of these values when the algorithm is applied to the Cyber—Security data with (A*,0*) =
(10-7,107!) and n1:n_; = 4000:10000 is shown in Figure 1. While Bound 1 is a bit erratic Bound

*More specifically, for each value of X € {1,.5,.1, .05, ..., .000005, .0000001} we search a grid of ¢ values that starts
with the set {0.001, 0.01,0.05,0.1,0.5,1,5,10,100} and is refined using a golden search as described in [34, Section
4].

17

LANL Technical Report: LA-UR-05-5165 4 Experiments

10 T T T T T T

01F

0.01

0.001

le-04

1e-05 rBound 0 --------

1e-06 B
1 10 100 1000

number of iterations
Figure 1: The criterion gap R* — R™ and bounds on this gap employed by Stopping Rules 0, 1 and
2 for the Cyber—Security data. Bound 0 and 2 are indistinguishable up to about iteration 25,
at which point they separate and Bound 2 becomes a monotonically decreasing lower envelope of
Bound 1.

2 is monotonic and relatively smooth. Nevertheless both will stop the algorithm at nearly the same
iteration (unless € is very close to 1). In addition while Bounds 1 and 2 may be loose, i.e. they are
often several orders of magnitude larger than the actual criterion gap, their behavior tracks that
of the criterion gap relatively well and therefore the corresponding stopping rules are very effective
relative to Rule 0. For example suppose we choose € = 107°. Because the initial criterion gap is
so small it takes only about 25 iterations for the algorithm to reach this accuracy. Both Stopping
Rules 1 and 2 terminate the algorithm after approximately 1000 iterations, but Stopping Rule
0 terminates after approximately 1.225 x 10® iterations (approximately 10 orders of magnitude
more).

Results obtained by applying the algorithm to the Spambase data with (A*,0*) = (107¢,1073)
and n = 4601 are shown in Figure 2. In this case the initial criterion gap is larger so the separation
between the criterion gap and the bounds is smaller. Once again Bound 1 is a bit erratic, and this
time there are several regions (beyond the initial region) where Bounds 1 and 2 are well separated.
This suggests that the monotonic behavior of Bound 2 provides a more robust stopping rule. As
before Bounds 1 and 2 are loose, but their behavior tracks that of the criterion gap relatively
well and therefore the corresponding stopping rules are very effective. For example it takes about
200,000 iterations for the algorithm to reach an accuracy ¢ = 1072, while both Stopping Rules
1 and 2 terminate the algorithm after approximately 2,000,000 iterations and Stopping Rule 0
terminates after approximately 4 x 10!! iterations (approximately 5 orders of magnitude more).
More generally the number of the excess iterations for Stopping Rule 2 appears to be less than an
order of magnitude for a large range of values of e.

In both cases above it is clear that Stopping Rules 1 and 2 are far superior to Stopping Rule 0.

Experiment 2. This experiment compares actual computational requirements for the main loop
of various decomposition algorithms applied to the Cyber—Security data. With density level
p = 1, accuracy € = 107°, parameter values (*,0*) = (10~7,107!) and ()\,&) = (.05,.05), and
five different problem sizes ni:n_; = 2000:4000, 2500:5000, 3000:6000, 3500:7000, and 4000:8000
we employed the decomposition algorithm with Stopping Rule 2 and pair selection methods max—
Ip2, Composite-I, Composite-II, max—vps and max—qp2. For each problem size we generated ten

18

LANL Technical Report: LA-UR-05-5165 4 Experiments

10 T T T — T T — T T — T
) PSPPSR PRIITITIY . | 1 e
01 b]
0.01 E
0.001 | E
1e-04 | 9
R* — R™
1e-05 rBound 0 -------- E
Bound 1
Bound 2 ——
1e-06 N n | n n 21 n n 21 n n 21 n
100 1000 10000 100000 1e+06

number_iterations
Figure 2: The criterion gap R* — R™ and bounds on this gap employed by Stopping Rules 0, 1 and
2 for the Spambase data. Bound 0 and 2 are close up to about iteration 20,000, at which point
they separate and Bound 2 becomes a monotonically decreasing lower envelope of Bound 1.

different training sets by randomly sampling (without replacement) the original data set. Then we
ran the decomposition algorithm on each training set and recorded the number of iterations and the
wallclock time of the main loop. The minimum, maximum and average values of these quantities
for parameter values (*,0*) = (10~7,107!) are shown in Figure 3 5. There is much to discern from
the plot on the left. It is easy to verify that for all pair selection methods the numbers of iterations
are several orders of magnitude smaller than the worst case bound given in Example 2. On average
the convergence rate of the max—Ip2 method is much worse than the other methods. This may
be partly due to the fact that this method uses only first order information to determine its pair.
However, this is also true of the max—vps method whose convergence rate is much faster. Indeed,
it is curious that the max—1p2 method, which chooses a stepwise direction based on a combination
of steepness and room to move, has a worse convergence rate than the max—vps method, which
chooses a stepwise direction based on steepness alone. By slightly modifying the max—1p2 method
to obtain the Composite-I method a much faster convergence rate is observed. The Composite-I
and max—vps methods have roughly the same convergence rate. This suggests that Composite—I
may be achieving its improved rate by choosing a max—violating pair a large fraction of the time.
Indeed, on a typical run of the Composite-I method we found that, among the 53% of the iterations
where the max—1p2 and max—violating pairs were different, a max—violating pair was chosen 4.3
times as often. Although a larger stepwise improvement does not guarantee a faster convergence
rate the max—qp2 method, which gives the largest stepwise improvement, also gave the fastest
convergence rate. However the Composite-II method, which requires far less computation than
the max—qp2 method, gave nearly the same convergence rate. Quantitatively the average number
of iterations for the max-1p2 method is roughly 9 times that of Composite-1I, while the average
number of iterations for Composite-I is roughly 2 times that of Composite-II. The variation in
the number of iterations is smallest for Composite-II and max—qp2, followed by Composite-I and
max—vps, and then max—Ip2. This variation ranges from 2x to 8x across the different sample sizes
and methods. The plot on the right shows the wallclock times. The times for the max—qp2 method
are omitted because they are much larger than the rest. Indeed they are roughly n times larger

SIn Figures 3-6 the x-axis values of some points are slightly offset so that their y-axis values can be more easily
visualized.

19

LANL Technical Report: LA-UR-05-5165 4 Experiments

100000 — ; , : .
max-1p2 —=— max-1p2 r—=—
Compositel Compositel
Compositell - Compositell v
max—vps e 4k max—vps e i
max—qp!

10000 ¢ E

1000 | o ! o

number of iterations
wallclock time (seconds)

1 - -
[]
.. ». i

¥ Y

I I I I I 0 L2 i 1 I I
6000 7500 9000 10500 12000 6000 7500 9000 10500 12000
number of samples, n number of samples, n

Figure 3: Main loop computation for Cyber—Security data with (*,0*) = (1077,1071).

T T T T T 30 T T T T T
max-lp2 ——<— max—Ip2 ——x—
Compositel Py Compositel M
2! Compositell v B e Compositell :--v---
=} max—vps ‘e el B max—vps e T
.S max—qp =
= 10000 |- {1 8
8 S 20t - .
e v =z
-
o we <)
S ve 8 15 . i
= =
(&) AW ad
= O 10 [- i
g e S
g :Q X
'C_é 5 * e 1
B =
=9
1 1 1 1 1 > ? 1 1 1 1
6000 7500 9000 10500 12000 6000 7500 9000 10500 12000
number of samples, n number of samples, n

Figure 4: Main loop computation for Cyber—Security data with (A*,o*) = (.05,.05). The number
of iterations in the left plot is identical for all five methods for all values of n. The wallclock time
in the right plot is indistinguishable for the Composite-I, max—vps and max-1lp2 methods.

than the wallclock times for Composite—II. The Composite—IT method achieved the fastest average
wallclock times which were roughly 6.8 times faster than the max—1p2 method and 1.6 times faster
than the Composite-I and max—vps methods.

Results for parameter value (\,5) = (.05,.05) are shown in Figure 4. The computational require-
ments here are greater than with the previous parameter value. We attribute this primarily to the
fact that R* is larger so that the initial criterion gap is larger. The larger value of A corresponds
to a strong regularization term that produces a solution where all components of a are forced from
their initial values at one bound to their final values at the opposite bound. To move all ny +n_1
components of a to their opposite bound using working sets that contain one sample from each
class requires n_1 iterations (since n_; > n1) and this is exactly what the algorithms did for all five
pair selection methods on every training set. This is a quintessential example of a problem where
the number of iterations must be (at least) a significant fraction of the number of training samples
regardless of which algorithm is used. The resulting solution has the simple interpretation that its
normal vector is the difference in class means. The wallclock times of the max—Ip2, Composite—I
and max—vps algorithms are roughly 5 times faster than the Composite-II algorithm because of the

20

LANL Technical Report: LA-UR-05-5165 4 Experiments

extra computation per iteration employed by Composite—II. The relationship between the number
of iterations and the training set size is demonstrably linear, and the relationship between the
wallclock times and the training set size is demonstrably quadratic. These relations coincide with
the linear and quadratic forms predicted by the analysis in Section 3.

Experiment 3. This experiment is similar to the previous experiment except that the al-
gorithms are applied to the Spambase data. With accuracy ¢ = 107% parameter values
(*,0*) = (1075,1073) and (A,&) = (1072,1073), and seven different problem sizes n =
1000, 1500, 2000, 2500, 3000, 3500,4000 we employed the decomposition algorithm with Stopping
Rule 2 and pair selection methods max—1p2, Composite-I, Composite-II, max—vps and max—qp2.
We ran the decomposition algorithm on ten different training sets for each problem size and recorded
the number of iterations and the wallclock time of the main loop. The minimum, maximum and
average values of these quantities for runs with parameter values (A*,0*) = (1076,1073) are shown
in Figure 5. Once again it is easy to verify that for all pair selection methods the numbers of iter-
ations in the left plot are several orders of magnitude smaller than the worst case bound given in
Example 1. In addition the convergence rate is fastest for the Composite—II and max—qp2 methods,
followed by the Composite-I and max—vps methods, and then the max—qp2 method. In this case
it appears that the max—vps method has a slight edge on the Composite-I method. On a typical
run of the Composite-T method we found that, among the 64% of the iterations where the max—1p2
and max—violating pairs were different, a max—violating pair was chosen 3.9 times as often. The
variation in the number of iterations, which ranges from 2x to 4x across the different sample sizes
and methods, is smallest for Composite-II and max—qp2, followed by Composite-I and max—vps,
and then max—1p2. Quantitatively the average number of iterations for max—1lp2, Composite-I and
max—vps is roughly 92, 13 and 11 times that of Composite-II respectively. In addition the average
wallclock times of the max-Ip2, Composite-I and max—vps are roughly 23.6, 3.8 and 2.5 times that
of Composite-II respectively. Once again the plot on the right does not show the wallclock times
for the max—qp2 method, but they are roughly n/4 times that of the Composite-II method.

1le+08 T T b T T T T 35 T T T T T
max-Ip2 ——<— max-Ip2 ——<—
Compositel — Compositel
2 Compositell :--v--- w30 | Compositell v i
= max-vps e) max-vps e
2 geor max-qp 4 =
: SR I -
<3 % l % =
g g
@ % N—r
+—
= 20 | .
o Q
S 1e+06 | : . PO g
; . L) ° =
= + 15| b
(<] ° ® o
E 2w
1 - -
= 100000 F . i =
=] . k5 v Y X ¥ —
. M 8 5L]
v
2 :
i . ° ®
10000 1 1 1 1 1 1 1 0 ™ 4 3® P ¥ hd hi
1000 1500 2000 2500 3000 3500 4000 1000 1500 2000 2500 3000 3500 4000
number of samples, n number of samples, n

Figure 5: Main loop computation for Spambase data: (*,0*) = (1076,1073).

The results for parameter values (A, &) = (1072,1073) are shown in Figure 6 and indicate a
significant decrease in the computational requirements. This decrease in computation as a result
of a larger A is opposite to what we observed in Experiment 2. We attribute this to the fact that
the switch from (A*,0*) to (\,&) did not yield a big change in the initial criterion gap as it did
in Experiment 2. However most other characteristics of the solutions produced here are similar
to those in Experiment 2. Indeed the number of iterations is roughly the same for all five pair

21

LANL Technical Report: LA-UR-05-5165 5 Summary

10000 T T T T T T 1'6 T T T T T +
ma_x'—lp2 et ma‘X'—IPQ et ¥
Compositel — Compositel
©w Compositell :--v-- w l4r Compositell :-v--- b
= max-vps - g max-vps -
.S max—qp 2 12t i
P4 =1
< o L4
— ¥ S
8 % %) ¥ ~ 1F .
£ | 5 b 5
S 1000 | F 1) {1 g ost . -
B ¥ = ¥
g ;O = 06
e} iy "5 .6 | _
A ER :
= = Tl ’
'C_é -
B o02r . - e B
pist
> Tw b
100 1 1 1 1 1 1 1 0 Xie if L] 1 1 1 1 1
1000 1500 2000 2500 3000 3500 4000 1000 1500 2000 2500 3000 3500 4000
number of samples, n number of samples, n

Figure 6: Main loop computation for Spambase data: (A*,0*) = (1072,1073). The number of
iterations in the left plot is similar for all three methods. The wallclock time in the right plot is
nearly indistinguishable for the Composite-I and max-1lp2 methods.

selection methods and the wallclock times for the max—lp2, Composite-I and max—vps algorithms
are approximately 5 times faster than Composite-II. In addition the relationships between the
number of iterations, the wallclock times, and the training set size coincide with the linear and
quadratic forms predicted by the analysis in the previous section.

For the L1-SVM the gap between the lower and upper iteration bounds is smaller when A is larger.
Indeed, for large A and large n the lower bound is approximately % (€5 — €) and the upper bound
is 2n1n RT* where €} is the clipped classification error for an SVM solution with criterion value R*.
When é}, is large these two values may differ by no more than a factor of 10. This partially explains
why the computational requirements for the strongly regularized problem instances in Experiments
2 and 3 exhibit such a low variance and coincide so well with the predicted linear and quadratic
forms. In these cases the max—Ip2, Composite-I and max—vps algorithms are fastest because they
require less computation per iteration. On the other hand, in instances where (), o) give near—
optimal performance the values of A are smaller and so the gaps between the lower and upper
bounds are often much larger. In these cases the actual computation is often not close to either
bound, the variance is higher, and the Composite-II algorithm is the fastest because it requires
far fewer iterations. In addition these near-optimal values of A can give a smaller value for R*,
especially when they yield a solution that separates the training data. In such cases the initial
criterion gap is smaller and the run times are often faster. This is the most likely explanation for
the significantly lower computational requirements for the Cyber—Security experiments.

5 Summary

We have described SVM classifier design algorithms that allow a different weight for each training
sample. These algorithms accept an accuracy €, of a primal QP problem as input and are guaranteed
to produce an approximate solution that satisfies this accuracy in low order polynomial time. They
employ a two—stage process where the first stage produces an approximate solution to a dual QP
problem and the second stage maps this approximate dual solution to an approximate primal
solution. For the second stage we have described a simple O(nlogn) algorithm that maps an
approximate dual solution with accuracy (2v2K + 8\/X)_2/\6121 to an approximate primal solution

22

LANL Technical Report: LA-UR-05-5165 6 Proofs

with accuracy €,. For the first stage we have presented new results for decomposition algorithms
and we have described decomposition algorithms that employ new pair selection methods and new
stopping rules.

For T-rate certifying decomposition algorithms we have established the optimality of 7 = 1/(n—1)
and described several pair selection methods (max—qp2, max-lp2, Composite-I, Composite—II)
that achieve the 7 = 1/(n — 1) iteration bound. We have also introduced new stopping rules
that are computationally efficient and that guarantee a specified accuracy for the approximate
dual solution. While these stopping rules can be used by any decomposition algorithm they are
especially attractive for the algorithms developed here because they add a negligible amount of
computation to the main loop.

Since the pair selection methods (max-1p2, Composite-I, Composite-II) require O(n) compu-
tation they yield W2 decomposition algorithms that require only O(n) computation in the main
loop. In addition, for the L1-SVM dual QP problem we have described operational conditions
for which these W2 decomposition algorithms possess an upper bound of O(n) on the number of
iterations. For this same problem we have presented a lower bound for any W2 decomposition
algorithm and we have described general conditions for which this bound is ©(n). Combining the
bounds on main loop computation with the bounds on number of iterations yields an overall run
time of O(n?). Our experiments suggest that the pair selection algorithms with the most promise
are the Composite-I and Composite-IT algorithms which were obtained through a simple extension
of Simon’s algorithm.

Once the run time of the decomposition algorithm has been established it is straightforward to
determine the run time of the main routine in Procedure 1. Let ¢, be an upper bound on the time it
takes to perform a kernel evaluation. For an instance of L1-SVM where K is finite and operational
choices are made for ¢, and A Procedure 1 takes O(c,gn?) time to compute the parameters for the
canonical dual on lines 7-8, O(n) time to set o on line 9, O (n2) time to compute an approximate
dual solution on line 10, and O(nlogn) time to compute the offset b on line 11. Thus, the overall
run time is O(n?(cg + 1)). This run time analysis assumes that the matrix @ is computed once
and stored in main memory for fast (constant time) access. However the storage requirements for
this matrix may exceed the size of main memory. If this issue is resolved by computing a kernel
evaluation each time an element of () is accessed then the time to compute an approximate dual
solution is multiplied by cx. On the other hand if the elements of () are cached in a block of
main memory so that the average access time for an element of @) is B¢k, where 0 < 8 < 1 is
determined by the size and replacement strategy for the cache, then the multiplier is reduced to
Bcy, for the average case. It is an interesting topic of future research to determine how the different
pair selection methods affect the efficiency of the cache.

We note that algorithmic enhancements such as the shrinking heuristic in [12] can easily be
adapted to the algorithms presented here. In addition, the algorithms in this paper have been
developed for the SVM formulation in (1), but similar algorithms with the same run time guarantees
can be developed for the 1-CLASS formulation of [30] which has a similar form for the dual.

6 Proofs

Proof of Theorem 2. This proof is a slight modification of the proof in [25, Section 3.3] based on
an idea from the proof of [9, Theorem 5]. Define the criterion gap

23

LANL Technical Report: LA-UR-05-5165 6 Proofs

Let W3* C W™ be a T-rate certifying pair for o™. Then by the positivity of) and the definition
of o the criterion gap satisfies

AT = gla™) - (0"~ a™) ~ L (a® — ™) - Q(a® —a™)
o(a™|W3) (17)
< gla™) (o —a™) < olamW,) < TR

where a* € A*. Denote a solution to the two—variable LP problem by

a™ € ar max a™) - (y—a™
gveA(am,W?)g()- (v)

and let d™ = &™ — o™ so that o(a™|W3") = g(a™) - (&™ — a™) = g(@™) - d™. Then the stepwise
improvement with working set W™ is at least as good as the stepwise improvement obtained by
optimizing in the direction d™ and therefore
R(a™) — R(a™) > Jmax R(a™ + wd™) — R(a™) (18)
w

where the convexity of A implies the feasibility of @™ + wd™ for all 0 < w < 1. The stepwise
improvement in the direction d™ satisfies

2
m my my _ my m _ Y m, m
Orgno?%(l R(a™ +wd™) — R(a™) = Orgno?%(l (wg(a)-d 5 d™ - Qd)

2

> max (w'rAm - w—(4LS2))
0<w<1 2

where the second line follows from the bound g(a™) - d™ > 7A™ given by (17) and the bound

d™-Qd™ < 4LS?. To complete the proof we follow the steps after equation (9) in [25, Section 3.3].

When we reach the bottom of page 317 we retain the tighter bound

Om Z‘Ln04‘7(WL_'Wm)

where, in our case, 6, > 7/4LS? and y = %. This gives a tighter bound on the criterion gap
__5m0%_7(nl_7n0)

which leads to the “-1” term in the second part of our expression for ’m2 and ensures that the
expressions in first and second parts match at the boundary where ¢ = @.]

Proof of Theorem 3: We start by proving the first assertion. To simplify notation we write g as a
shorthand for g(«). Since setting & = « gives g- (& — a) = 0 it follows that o(«a|W,,) > 0. Similarly
o(a|Wy) > 0 for all Wy C W,,. Thus when o(a|W,) = 0 it follows that the assertion is true.
Therefore let us assume o(a|W,,) > 0.

Let

Wy € Ws).
2 argwgglgna(al 2)

24

LANL Technical Report: LA-UR-05-5165 6 Proofs

We start by deriving an expression for o(a|Wy). A two-variable problem with working set Wy =
{j, k} satisfies

o(a|W)= sup g-(d—a)= sup g-d
GeAla,Ws) a+deA(a,Wa)
= sup djg; + digx
d;j = —dy,

—aj < dj Swuj—qj
—ay < dp < ug — o

= sup di(g; — 9k)
—aj < dj Suj— @
ap —up < dj < oy,

= Ajr(95 — 9r)
where
min(u; — o,), g > Gk
Ajrp =< —min(aj,up — ag), gj < gk

0, 9j = 9k
The expression for o(a|Ws5) is obtained by maximizing over all pairs,

o(a|Ws) = {j,%zg/vn Aji(95 — 9k)- (20)

Now write

o(a|W,) =supg-(¢d—a)= sup g-d=supg-d
acA a+deA deD

where
D={d:d-1=0,—a; <d; <uj —a;}.

Let d* be a solution so that
o(a|Wy,) =g-d".

The intuition for what follows is that we will (implicitly) decompose d* into
d=d +.. . +d

such that p < n — 1, and for every i € {1,...,p} d has only two non-zero components and o + d'
is feasible at a.
Define the index sets

I.={i:d; >0}, I_={i:d; <0}

25

LANL Technical Report: LA-UR-05-5165 6 Proofs

and write
o(aW,) = > digi+ Y digi
iely iel_

Note that o(a|W,) # 0 and d* - 1 = 0 imply that both I; and I_ are non—-empty. We decompose
the right hand side into a sum of two—variable terms by applying the following recursion. Initialize
withm =0,d) =d}, I3 =1,,1° =I_, and

W= dg+ > dg.

i€l i€l?

Then while h™ # 0 choose an index pair (jm, km) € I x I, define 6., = min(dg’:n, —dy!), and
define

hm—|—1 — Z d§n+lgi + Z dzm+lgi

et ierm™t!
where
A" = Ojpkpmy &= Im
Mt =8 dP + 6k, 0= km (21)
dm, 1 % Jm OF km

and

Mt ={idrtt >0}, 1™ = {i: 4" <0}
This gives the recursion

R =B — 65k (i — G)-

From equation (21) it follows that

d"eD = d™eD.

Thus if A™*! #£ 0 then both I_’l_"+1 and I™! are non-empty verifying the existence of an index
pair for the next iteration. Furthermore, the definition of §; implies that either d;.’:n“ =0or

d’,:’mH = 0 (or both) so that the size of the index sets decreases by at least one at each iteration, i.e.

mkm

ot < rpuIm -1

Therefore at least one of the index sets becomes empty after at most n — 1 iterations. Furthermore
d™ -1 = 0 implies that both index sets become empty at the same iteration. Thus this recursion
decomposes the original sum as follows

o(a|Wn) = h® = 6j,k, (95, — Gk1) + Ojoka (s — Gkz) + o + 6k, (95, — Gk,) (22)

where p < n — 1. Let ¢ be the index corresponding to the largest of these terms and let o, =
0.k, (9j, — gr,) be its value. Then (22) implies

o(alWa) _ olalWa)
P - n-—-1"

qukq = (23)

26

LANL Technical Report: LA-UR-05-5165 6 Proofs

Furthermore if we combine the fact that o; k, > 0 implies g;, — gk, > 0 with the definitions of d?
and Aj i, we obtain

. — mi q
Ojky = mln(d]-

x —dzq) < min(ujq - ajq,oqu) = qukq'

Finally, combining this result with (23) and (20) gives

o(a|W,) "
W) o o = Gk (30 — 98) < Dok (s — 98) = 0@l og}) < o (el W5)

n—1
which completes the proof of the first assertion.

To prove the second assertion it suffices to give an example of a problem instance and a value a €
A such that the equality holds. For the primal problem in (1) let y = (y*,y~) where y* = (1,...,1)
and y~ = (—1,...,—1) are vectors whose lengths are not yet specified. Let u be decomposed into
corresponding components so that uw = (ut,u"). For the corresponding canonical dual problem
consider the feasible value a = (0,u~) (which is the initial value of « in Procedure 1). This gives
g=uvy. Ifut -1 =wu" -1 then it is easy to verify that

o(@W,)= sup g-(d—a)=y-((ut,0)—(0,u))

e A(a,Wy)
=("y) (uh—u7)

=1l-u=1,
and

W — . L) L :2 . +’ _
erggcvf(al 2) mﬁ)c(mm(ug aj, ar)(g; — gk)) = 2min(uf, u,)

where v is the largest component value of u™, and u, is the largest component value of u~.

Thus any problem where vt -1 = u~ -1 and min(u],u;) = ﬁ yields the relationship we

seek and finishes the proof. For example this condition is satisfied by vt = (1/2) and u~ =
1 1
(2(n—1)’ " 2(n—1))' U

Proof of Theorem 4: This proof follows directly from the proof of Theorem 2 since by assump-
tion the stepwise improvement of DECOMP satisfies (18) and the rest of the proof follows without
modification. O

Proof of Theorem 5: To prove this theorem we need the following lemma.

Lemma 1. Consider the conditions of Theorem 5, but let W), be an arbitrary working set of size p
(i.e. W, does not necessarily contain a T-rate certifying pair). Let

R 24
ap €arg max | (7) (24)

be a solution to the QP problem at (o, Wp). Then

%min (L%) < R(p) — R(a) < o(a|W)).

27

LANL Technical Report: LA-UR-05-5165 6 Proofs

Proof. First we prove the upper bound. From the positivity of () and the definition of o we obtain

Riay) ~ R(a) = g(a) - (ap —) ~ (o —) - Qop —) < gla) - (ap —a) < olali¥y).
Now we prove the lower bound. Let
& €arg max g(a)(y—a) (25)

’YEA(aaWP)

be a solution to the LP problem at (a,W)). Consider maximizing R in the direction d = & — .
This cannot yield a criterion value larger than R(ay), i.e.

> .
R(ap) > oA, R(a+ wd) (26)

If we write

w2
R(a+ wd) — R(a) = wg(a) - d — 7(1- Qd

and choose w to maximize R(a + wd) we obtain

g(@)-d>d-Qd

1,
@ _{ 952:, otherwise

and

g(@)-d—3d-Qd, g(a)-d>d-Qd
d otherwise '

The first case satisfies

R(o+w'd) - R() = gle)-d - 2d-Qd > Sg()-d = 2%,

Let @), be the p x p matrix formed from the elements Q;; : 4,7 € Wp. Then
d-Qd < Mnaa(@p) D d7 < pL Y up < pLU,
iEW) €Wy

and therefore the second case in (27) satisfies

1(g(a)-d)? _ o(a|W) (G(GIW)) 5 (W) (J(aIW))_

Rla+w'd) = R(e) = 35750 = = d-0d 2 LU,

Combining these two cases with (26) gives

o(a|W)
2

R(a,) — R(a) > R(a +w'd) — R(a) > 2V iy (1, "(O‘|W)> .

pLU,

28

LANL Technical Report: LA-UR-05-5165 6 Proofs

We now prove Theorem 5. Since R(a,) < R* and R(a,,) = R* we obtain
R(ap) — R(a) < R* — R(a) = R(a) — R(«).

Applying Lemma 1 on the left with W, and on the right with W,, gives

%min (1,%) < R —R(a) < o(a|Wy).

a(a|Wp)

Since W), contains a T-rate certifying pair o(a|W,) < and the proof is finished. O

Proof of Theorem 6: Let T be the empirical measure with respect to the i.i.d. sample T, and let
er(1, b) denote the corresponding empirical clipped error. Let & be an e-optimal solution to the L1-
SVM canonical dual QP problem. Use (3) to determine the dual variables & and a° corresponding
to & and o respectively. This gives a® = 0. Since the duality gap for the L1-SVM primal and dual
QP problems is zero (e.g. see [6] for finite dimensional problems and [11] for infinite dimensional
problems) the gap between the primal criterion value at (¢*,b*,&*) and the dual criterion at a is
no more than e. Thus

1 1 o
—5a-Qata-lte > AIIW‘II”;;&* :
Since Q is positive semi—definite this implies

1 n
a-1+e > = E &
n
i1

v

% Y max (0, 1—yi(* - p(zi) +b%))
=1

> %;min(1, max (0, 1 —y;(¢* - d(z;) + b")))
= éT("p*ab*) :

To bound er(¢*, b*) we apply the clipped error deviance result of [10, Equation (17)]. To this end

we set ¥ = 1 and C = i in [10, Equation (17)] and then we use the assumptions of Theorem

6 to simplify the result. Specifically the assumptions n > K2 1 1)Int and § < e~ ! imply that
D)) y

% < 1, and this makes it easy to verify that n > (% + 1) ln% is a sufficient condition on n and
that the right hand side of [10, Equation (17)] can be simplified as follows

K2 2 [K? 12 £ 1
—2+\/;(—+1> In (;/ﬁ = < i+ §lnM = &p.

22\n n

With these simplifications the error deviance result gives the following bound. If § < e~! and
n > (KT2 + 1) ln% then with probability at least 1 — ¢

er(y*,b%) > ep(*,b*) — e, . (29)

29

LANL Technical Report: LA-UR-05-5165 6 Proofs

Combining (28) and (29) gives
Q-1 > ep(¥*,b") —e—en .

Let s be the number of nonzero components of ¢ (i.e. the number of support vectors). Since
d; < 1/n we obtain s/n > a-1 and therefore

s > n(ép(lﬁ*,b*)—e—en) .

Furthermore, since a® = 0 and a W2 decomposition algorithm can change only two components at
each iteration the number of iterations m required to reach @ satisfies m > s/2 and therefore

S n(ep(y*,b*) — € —ey)
> 5 .

m

This determines m and completes the proof. O

Proof of Corollary 2: Since A, < n~" < 1 the condition n > (f—j + 1) ln% in Theorem 6 is implied
1-k

by the condition n > (f@—:’l) In %. Thus if we define §,, ;= e K741 then n = (RQ‘H) ln% and the

A n—r

condition n > (i(—: + 1) ln% is satisfied for all n > 1. Therefore we can apply Theorem 6 and
the inequality ep(1*,b*) > e} to obtain that for each n > 1 the number of iterations m satisfies
P" (m < m(n)) < §, where m(n) := max (O, w) and

1 [8. 24ymn 1 8 nl=r _
= 5 —1 = — — (In(24 — = K/2 .
En T\ R 2n+\/n<n(x/ﬁ)+K2+1> O(n™""%)

This means that there exists positive constants ¢ and 7 such that for all n > 7

x x g —K[2
m(n) = max (0, w) Z max <O’n(eP 62 cn)) .

.\ 2/% -
Let 7 = max (7, (% . Then m(n) > (=) n, Vn > 7, i.e. m(n) = Q(n). Now for any
€ 4

€p

ng > 7. we use the union bound to obtain

Pr(m >m(n),¥n >mng) = 1— Pr(3n > ny:m < m(n))

> 1-) P'(m<m(n) > 1-) b

n>no n>no
Letting ¢ = f(z;“ and recalling that k < 1/2 we obtain
11—k ©
Yho= YT < Yo [et
n>ng n>ng n>ngo no
_ 20 +§\/no)e_c\/n—0 < 4w/2no eV — 5
c c

where the integral was evaluated using a substitution of variables followed by integration by parts,
and the last step uses ¢ < 1. O

30

LANL Technical Report: LA-UR-05-5165 References

References

1]

[10]

[11]

[12]

[13]

[14]

[15]

Jose L. Balcazar, Yang Dai, and Osamu Watanabe. Provably fast training algorithms for
support vector machines. In Proceedings of the 1st International Conference on Data Mining
ICDM, pages 43-50, 2001.

C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.

C.C. Chang, C.W. Hsu, and C.J. Lin. The analysis of decomposition methods for support
vector machines. IEEE Transactions on Neural Networks, 11(4):1003-1008, 2000.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM : a library for support vector machines, 2001.

P.-H. Chen, R.-E. Fan, and C.-J. Lin. A study on SMO-type decomposition methods for
support vector machines. Technical report, 2005. to appear in IEEE Transactions on Neural
Networks.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and Other
Kernel-based Learning Methods. Cambridge University Press, Canbridge ; United Kingdom,
1st edition, 2000.

R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using the second order information
for training svm. Journal of Machine Learning Research, 2005. to appear.

C.-W. Hsu and C.-J. Lin. A simple decomposition algorithm for support vector machines.
Machine Learning, 46:291-314, 2002.

D. Hush and C. Scovel. Polynomial-time decomposition algorithms for support vector ma-
chines. Machine Learning, 51:51-71, 2003.

D. Hush, C. Scovel, and I. Steinwart. Stability of unstable learning algorithms. Technical
report, Los Alamos National Laboratory LA-UR 03-4845, 2003. accepted for publication in
Machine Learning.

D. Hush, C. Scovel, and 1. Steinwart. Polynomial time algorithms for computing approximate
SVM solutions with guaranteed accuracy. Technical report, Los Alamos National Laboratory
LA-UR 05-7738, 2005.

T. Joachims. Making large-scale SVM learning practical. In B. Scholkopf, C.J.C. Burges,
and A.J. Smola, editors, Advances in Kernel Methods - Support Vector Learning. MIT Press,
Cambridge, MA, 1998.

S.S. Keerthi and E.G. Gilbert. Convergence of a generalized SMO algorithm for SVM classifier
design. Machine Learning, 46:351-360, 2002.

S.S. Keerthi and C.J. Ong. On the role of the threshold parameter in SVM training algorithms.
Control Division Technical Report CD-00-09, Dept. of Mechanical and Production Engineering,
National University of Singapore, 2000.

S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murthy. A fast iterative nearest
point algorithm for support vector machine classifier design. IEEE Transactions on Neural
Networks, 11:637-649, 2000.

31

LANL Technical Report: LA-UR-05-5165 References

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murthy. Improvements to Platt’s
SMO algorithm for SVM classifier design. Neural Computation, 13:637-649, 2001.

D. Lai, N. Mani, and M. Palaniswami. A new method to select working sets for faster train-
ing for support vector machines. Technical Report MESCE-30-2003, Dept. Electrical and
Computer Systems Engineering, Monash University, Australia, 2003.

P. Laskov. Feasible direction decomposition algorithms for training support vector machines.
Machine Learning, 46(1-3):315-349, 2002.

S.-P. Liao, H.-T. Lin, and C.-J. Lin. A note on the decomposition methods for support vector
regression. Neural Computation, 14:1267-1281, 2002.

C.-J. Lin. Linear convergence of a decomposition method for support vector machines. Tech-
nical Report, 2001.

C.-J. Lin. On the convergence of the decomposition method for support vector machines. IEEE
Transactions on Neural Networks, 12:1288-1298, 2001.

C.-J. Lin. Asymptotic convergence of an SMO algorithm without any assumptions. IEEE
Transactions on Neural Networks, 13:248-250, 2002.

C.-J. Lin. A formal analysis of stopping criteria of decomposition methods for support vector
machines. IEEE Transactions on Neural Networks, 13:1045-1052, 2002.

N. List and H.U. Simon. A general convergence theorem for the desomposition method. In
J. Shawe-Taylor and Y. Singer, editors, 17th Annual Conference on Learning Theory, COLT
2004, volume 3120 of Lecture Notes in Computer Science, pages 363-377, 2004.

N. List and H.U. Simon. General polynomial time decomposition algorithms. In P. Auer and
R. Meir, editors, 18th Annual Conference on Learning Theory, COLT 2005, pages 308-322,
2005.

O.L. Mangasarian and D.R. Musicant. Successive overrelaxation for support vector machines.
IFEE Transactions on Neural Networks, 10:1032-1037, 1999.

O.L. Mangasarian and D.R. Musicant. Lagrangian support vector machines. Journal of Ma-
chine Learning Research, 1:161-177, 2001.

E.E. Osuna, R. Freund, and F. Girosi. Support vector machines: training and applications.
Technical Report AIM-1602, MIT, 1997.

J.C. Platt. Fast training of support vector machines using sequential minimal optimization. In
B. Scholkopf, C.J.C. Burges, and A.J. Smola, editors, Advances in Kernel Methods - Support
Vector Learning, pages 41-64. MIT Press, Cambridge, MA, 1998.

B. Scholkopf, J.C. Platt, J. Shawe-Taylor, and A.J. Smola. Estimating the support of a high-
dimensional distribution. Neural Computation, 13:1443-1471, 2001.

C. Scovel, D. Hush, and I. Steinwart. Learning rates for density level detection. Analysis and
Applications, 3(4):356-371, 2005.

H.U. Simon. On the complexity of working set selection. In Proceedings of the 15th Interna-
tional Conference on Algorithmic Learning Theory, 2004.

32

LANL Technical Report: LA-UR-05-5165 Appendix A: Algorithms

[33] I. Steinwart. Consistency of support vector machines and other regularized kernel classifiers.
IEEE transactions on information theory, 51:128-142, 2005.

[34] I. Steinwart, D. Hush, and C. Scovel. A classification framework for anomaly detection. Journal
of Machine Learning Research, 6:211-232, 2005.

[35] I. Steinwart and C. Scovel. Fast rates for support vector machines using Gaussian kernels.
Technical report, Los Alamos National Laboratory LA-UR 04-8796, 2004. submitted to Annals
of Statistics (2004).

[36] I. Steinwart and C. Scovel. Fast rates for support vector machines. In P. Auer and R. Meir,
editors, 18th Annual Conference on Learning Theory, COLT 2005, pages 279-294, 2005.

[37] V. Vapnik. Statistical Learning Theory. John Wiley and Sons, Inc., New York, NY, 1998.

Appendix A: Algorithms

A complete algorithm that computes an e,-optimal solution to the primal QP problem is provided
by the (Procedure 1,Section 2) and Procedures 3-8 in this appendix. Procedure 3 implements a W2
variant of the Composite-I decomposition algorithm with Stopping Rule 2. Procedure 4 implements
Simon’s algorithm where the values in (11) are stored in a list of 3—tuples of the form (u, i, <) where u
is a value from (11), i is the index of the corresponding component of «, and ¢ € {+, —} is a symbol
indicating the entry type (in particular ¢ = + when p; = u;, — o, and ¢ = — when p;, = ;). The
algorithm scans the ordered list and saves the index pair that maximizes o(@|{j, k}) as described in
Section 2.1. Since this algorithm tracks the indices of the maximum and minimum gradient values
it also produces a max—violating pair when it exits the loop. Procedure 5 computes the initial
gradient, the initial list M, and an initial upper bound s° = 1 on the criterion gap R* — R(a?).
The run time of this procedure is O(n?) as determined by the gradient computation. Procedure 6
computes the stepwise improvement for the W0 and Wy, pairs and then updates o according
to the pair with the largest improvement. This routine runs in O(1) time. Procedure 7 shows the
deletions and insertions required to update the M-list. With the appropriate data structure each
of these insert and delete operations can be performed in O(logn) time. Procedure 8 implements
the O(nlogn) algorithm described in Section 2.3.

33

LANL Technical Report: LA-UR-05-5165 Appendix A: Algorithms

Procedure 3 The Composite-I Decomposition Algorithm.

Decomposition(Q,w,c,u, €, al)

1:
2:
3: (g% MO, s0) < Initialize (Q,w,u,a®)

4: m<+ 0

5: repeat

6: (TT:lpZ’ Wr'rnnm Um) — Simon(gma Mm)

7. if (6™ =0) then

8 Return(a™, g™)

9: end if

10 (@™F1 6 W™) « CompositeUpdate(a™, g™, @, ip2s Win)
11: g™t g™ — Qo™ — ™)

12 M™*! + UpdateMlist(M™ W™, o™, o™ ")

13 ™« min((n — 1)o™,s™) — o

4 m+m+1

15: until (sm < e)

16: Return(a™,g™)

Procedure 4 This routine uses Simon’s algorithm to compute a max-lp2 pair W,;2. It also
computes and returns a max-violating pair W,, and the value 0* = o(a|Wpyp2). It assumes that
M is an sorted list arranged in nonincreasing order by the value of first component.

1: Simon(g, M) { M = [(M’i,g)la (M:iag)Z, teey (M,‘i,C)Qn] }

2:

3 dmaz < 0, imin < 0, Gmaz ¢ —00, Gmin < 00, 0" 0, Wpypo < 0
4: k<« 1

5: while (ug > 0) do

6: if ((gk = +1) and (g’ik > gmaw)) then

T: Gmaz < Giy» Imaz < Uk

8: if (uk(9maz — Gmin) > 0*) then

9: Wmlp2 — {imazca Z.min}‘a o* Nk(gmaw - gmin)
10: end if

11: else if ((sx = —1) and (gi, < gmin)) then

12: Gmin < Gipy bmin < Uk

13: if (uk(gmaz — Gmin) > o*) then

14: Wmlp2 «— {'L.macca imin}a oF Nlc(gmaac - gmin)
15: end if

16: end if

172 k+ k+1

18: end while

19: Wiy < {imawaimin}

20: Return(Wpe, Wiy, 0*)

34

LANL Technical Report: LA-UR-05-5165 Appendix A: Algorithms

Procedure 5 This routine accepts a feasible value a and computes the corresponding gradient g,
a list M of 3—tuples (p,1,<) sorted by p, and a trivial bound s = 1 on R* — R(«).

10:

: Initialize(Q,w,u, a)

1
2:
3 g+ —Qa+w
4 M0

5:
6
7
8
9

for i=1,...,n) do
M « Insert(M, (a;,i,—))
M + Insert(M, (u; — a;,i,+))

: end for
84+ 1

Return(g, M, s)

Procedure 6 This routine computes the stepwise improvements for a max-1p2 pair Wp,;» and a
max—violating pair W,,,,,, and then updates o using the pair with the largest stepwise improvement.
It returns the new value of o, and the corresponding stepwise improvement value and index pair.

—_

e e)
W N 22

—
=

OON NN NN e
A o = SR B oDl

CompositeUpdate(a®?, ¢, Q, Winip2, Wimw)

{i1,92} ¢ Wi
8g < Gi, — iy» 4 Qiyiy + Qigiy — 2Qiriy, Amupz = min(u;; — a4, o)
if (04 > qAmip2) then
Am
5mlp2 — Ampo (59 - q%)

else
2 (55
6mlp2 — ﬁa AmlpZ — 7
end if

: {jlajZ} — Wi
t0g < Gji — inr 4 Qjiji + Qiogis — 2Qj1jas Amo = mln(“ﬁ — 0, 0

old old)
if (6, > ¢Amy) then
bmw = D (8 — 42)

: else _
9 8
5m1., o Ame 7
end if

if (Spip2 > Omo) then
a;?.lew — aglld + Ampoa agew V. azqéd _ AmlpZ
Return(anew, 6mlp2> Wmpo)

: else

afft ozjo-fd + Ay, 07— fld A
Return(a”™", §my, Winw)

: end if

35

LANL Technical Report: LA-UR-05-5165

Appendix A: Algorithms

Procedure 7 This routine updates the sorted list M.

10:
11:
12:

1
2
3
4
5:
6
7
8
9

. UpdateMlist (M, W, qnev)
: {’I:l,’ig} «~ W
: M < Delete(M, (af', i1, —))
M « Delete(M, (u;, — a2 iy, +))
: M < Delete (M, (af, iy, —))
M Delete(M, (g, — azzd,im‘*’))
: M < Insert (M, (of¥, iy, —))
: M + Insert (M, (usy — i, +)
M + Insert (M, (™ ia, —))
M <+ Insert (M, (uzy — ™, ig, +)
Return(M)

Procedure 8 This routine determines the offset parameter according to Theorem 1. Note that

the input g is the gradient vector from the canonical dual solution.

1:

[S e B S e S =
X NPTy P2

Offset(g,y,u)

((gla glaﬂ‘l)a ey (gna Yns ﬁn)) <« SortIncreasing((gl, Y1, ul)a) (gn7 Yn, un))

st D iyimr Wiy 87 <0
L3 5103 — 91)
L*«~ L, b<q
for (i=1,...,n—1) do
if (7; =1) then
sT «— st —a;
else
ST 8 +uy
end if
L+ L—(Gis1—Gi)(sT —s7)
if (L < L*) then
L*«— L, b+ gip1
end if
: end for
Return(b)

36

